Search results for " Thermodynamics"
showing 10 items of 288 documents
Quantification and automatized adaptive detection of in vivo and in vitro neuronal bursts based on signal complexity.
2015
In this paper, we propose employing entropy values to quantify action potential bursts in electrophysiological measurements from the brain and neuronal cultures. Conventionally in the electrophysiological signal analysis, bursts are quantified by means of conventional measures such as their durations, and number of spikes in bursts. Here our main aim is to device metrics for burst quantification to provide for enhanced burst characterization. Entropy is a widely employed measure to quantify regularity/complexity of time series. Specifically, we investigate the applicability and differences of spectral entropy and sample entropy in the quantification of bursts in in vivo rat hippocampal meas…
Equilibrium fluid-crystal interfacial free energy of bcc-crystallizing aqueous suspensions of polydisperse charged spheres
2015
The interfacial free energy is a central quantity in crystallization from the meta-stable melt. In suspensions of charged colloidal spheres, nucleation and growth kinetics can be accurately measured from optical experiments. In previous work, from this data effective non-equilibrium values for the interfacial free energy between the emerging bcc-nuclei and the adjacent melt in dependence on the chemical potential difference between melt phase and crystal phase were derived using classical nucleation theory. A strictly linear increase of the interfacial free energy was observed as a function of increased meta-stability. Here, we further analyze this data for five aqueous suspensions of charg…
Charm quark mass with calibrated uncertainty
2016
We determine the charm quark mass ${\hat m}_c({\hat m}_c)$ from QCD sum rules of moments of the vector current correlator calculated in perturbative QCD. Only experimental data for the charm resonances below the continuum threshold are needed in our approach, while the continuum contribution is determined by requiring self-consistency between various sum rules, including the one for the zeroth moment. Existing data from the continuum region can then be used to bound the theoretical error. Our result is ${\hat m}_c({\hat m}_c) = 1272 \pm 8$ MeV for $\hat\alpha_s(M_Z) = 0.1182$. Special attention is given to the question how to quantify and justify the uncertainty.
Three-body correlations and conditional forces in suspensions of active hard disks
2017
Self-propelled Brownian particles show rich out-of-equilibrium physics, for instance, the motility-induced phase separation (MIPS). While decades of studying the structure of liquids have established a deep understanding of passive systems, not much is known about correlations in active suspensions. In this work we derive an approximate analytic theory for three-body correlations and forces in systems of active Brownian disks starting from the many-body Smoluchowski equation. We use our theory to predict the conditional forces that act on a tagged particle and their dependence on the propulsion speed of self-propelled disks. We identify preferred directions of these forces in relation to th…
Vortex density waves and high-frequency second sound in superfluid turbulence hydrodynamics
2010
In this paper we show that a recent hydrodynamical model of superfluid turbulence describes vortex density waves and their effects on the speed of high-frequency second sound. In this frequency regime, the vortex dynamics is not purely diffusive, as for low frequencies, but exhibits ondulatory features, whose influence on the second sound is here explored.
Interfacial energy effects within the framework of strain gradient plasticity
2009
AbstractIn the framework of strain gradient plasticity, a solid body with boundary surface playing the role of a dissipative boundary layer endowed with surface tension and surface energy, is addressed. Using the so-called residual-based gradient plasticity theory, the state equations and the higher order boundary conditions are derived quite naturally for both the bulk material and the boundary layer. A phenomenological constitutive model is envisioned, in which the bulk material and the boundary layer obey (rate independent associative) coupled plasticity evolution laws, with kinematic hardening laws of differential nature for the bulk material, but of nondifferential nature for the layer…
Exponential Relaxation out of Nonequilibrium
1989
Simulation results are presented for a quench from a disordered state to a state below the coexistence curve. The model which we consider is the Ising model but with the dynamics governed by the Swendsen-Wang transition probabilities. We show that the resulting domain growth has an exponential instead of a power law behaviour and that the system is non-self-averaging while in nonequilibrium. The simulations were carried out on a parallel computer with up to 128 processors.
Reversibility and Diffusion in Mandelythiamin Decarboxylation. Searching Dynamical Effects in Decarboxylation Reactions
2012
Decarboxylation of mandelylthiamin in aqueous solution is analyzed by means of quantum mechanics/molecular mechanics simulations including solvent effects. The free energy profile for the decarboxylation reaction was traced, assuming equilibrium solvation, while reaction trajectories allowed us to incorporate nonequilibrium effects due to the solvent degrees of freedom as well as to evaluate the rate of the diffusion process in competition with the backward reaction. Our calculations that reproduce the experimental rate constant show that decarboxylation takes place with a non-negligible free energy barrier for the backward reaction and that diffusion of carbon dioxide is very fast compared…
Thermodynamic pressure in nonlinear nonequilibrium thermodynamics of dilute nonviscous gases.
2000
In this paper, using extended thermodynamics, we build up a nonlinear theory for a dilute nonviscous gas under heat flux. The fundamental fields are the density, the velocity, the internal energy density, and the heat flux. The constitutive theory is builtup without approximations. We single out the nonlinear complete expressions of the Gibbs equation and of the nonequilibrium pressure. In particular, we determine the complete expressions furnished by the theory for the nonequilibrium pressure tensor and thermodynamic pressure, i.e., the derivative of the nonequilibrium internal specific entropy with respect to the specific volume, times the nonequilibrium temperature. In a second-order app…
Detection of steering direction using EEG recordings based on sample entropy and time-frequency analysis.
2016
Monitoring driver's intentions beforehand is an ambitious aim, which will bring a huge impact on the society by preventing traffic accidents. Hence, in this preliminary study we recorded high resolution electroencephalography (EEG) from 5 subjects while driving a car under real conditions along with an accelerometer which detects the onset of steering. Two sensor-level analyses, sample entropy and time-frequency analysis, have been implemented to observe the dynamics before the onset of steering. Thus, in order to classify the steering direction we applied a machine learning algorithm consisting of: dimensionality reduction and classification using principal-component-analysis (PCA) and sup…